

Improved competitiveness through optimization of cold chain communication

Guðrún Ólafsdóttir Implementation Coach CHILL-ON

Pre-conference Workshop - EFFoST Budapest November 10th 2009

UNIVERSITY OF ICELAND

SCHOOL OF ENGINEERING AND NATURAL SCIENCES

www.chill-on.com

Improved quality, safety, transparency and traceability for consumers

Real time temperature monitoring, geographic location and traceability system

Supply Chain Management & Decision Support System

Fish Supply Chain Hand over points From vessel Fish Market Processor Trucking company **Shipping Company** Stevedoring at foreign port Trucking to 2nd processor Secondary Processor / Depot Trucking to Market Sales point at Market Trucking to buyer Buyers depot / cold store Trucking Retailer / Fishmonger / Restaurant Consumer

Optimized chilling
T-sensors, GPS - ICT
Optical TTIs for packaging
QMRA /SLP models

Rapid detection of bacteria / qPCR

CHILL-ON Technologies

Content

- CHILL-ON project
- CHILL-ON technologies
- Vision of CHILL-ON
- Implementation and validation in field trials
 - Monitoring of temperature transparency
- Industrial requirements
 - Competitiveness
 - Compliance with regulations industrial standards
 - Added value

CHILL-ON Consortium 25 partners from 12 countries

www.chill-on.com

UNIVERSITÀ DEGLI STUDI DI PARMA

Novel technologies to improve the safety, transparency and quality assurance of the cold chain

www.chill-on.com

intermediary between the anticipated and already achieved results of Chill-On and the practical needs of industry.

Implementation -Communication

- Preparation for field trials
- implementation and validation of technologies
- integration, communication,
- complementary motives and mutual benefits of partners

Validation of CHILL-ON technologies in field trials

CHILL-ON technologies

- a holistic concept
- stand alone technologies

Status

- Prototypes still in the testing phase
- Ready for implementation
- Commercial products

Supply chains:

- Poultry
 - Germany
 - Italy
 - Brazil

- Fish
 - *Cod IS-> FR*

- salmon, CSS NO-> FR
- Hake Chile
- Tilapia China

CHILL-ON technologies conceptual holistic approach

Vision of CHILL-ON

Step Analysis and Action Points - SAAP

Implementing technologies in field trials risk based approach

Conduct risk analysis Determine action points

Establish critical limits

Establish monitoring procedures

Establish corrective actions

Establish record keeping procedures

Establish verification procedures

- Adapt the 7 steps of HACCP methodology
- Analyse risks in the process of implementing technologies
- Evalute all obstacles / Risk Assessment /Action points

➤ SAAP — based on preventive measures

Step Analysis and Action points							
Action point AP	Preventive Measures	Control measures	Target critera min / max Alerts	Corrective action / Contingency plans	Records	Responsible operator	Internal reference documents

Establishment of Standard Operation Procedures (SOP) and TOR - Field trials scenarios

Assessment of supply chains

- processes
 - Air transport v.s ship
 - Packaging
 - MAP/air / cooling mats
 - Optimized chilling
 - slurry ice v.s. CBC (Contact Blast and Cooling)

- requirements of the industry / authorities
 - Temperature critera
 - Type of bacteria and limits

www.chill-on.com

Mapping trials: cod fillets / loins transported by ship/truck IS-UK-FR

Effect of temperature abuse on shelf life of cod loins

www.chill-on.com

Shelflife of products under various conditions verified by sensory analysis

QMRA / SLP models and DSS

www.chill-on.com

Decision Support System based on output from:

 Quantitative Microbial Risk Assessment Specific Foodborne Pathogens (SFP)

Shelf life prediction - Specific Spoilage Organisms (SSO)

i.e. in cod

- P. phosphoreum
- Pseudomonas spp
- − H₂S-producers

 QMRA/SLP models take into account growth rate of bacteria at different temperatures

www.chill-on.com

Molecular diagnostic tools

PCR test kits (Polymerase Chain Reaction) for

- ✓ food pathogens (i.e Salmonella, Listeria monocytogenes, Campylobacter, E. coli, S. aureus)
- ✓ spoilage organisms (*P. phosphoreum, Pseudomonas ssp, H*₂S-producers)
- ✓ hygienic markers (*Enterobacteriaceae*)

Status:

- √ Validation of methods in ring trials between laboratories/ external laboratories
- √ Shelf life studies to verify their correlation to conventional methods!
- ✓ link traceability with analytical procedures based on DNA analysis

Advantage:

Analysis time ~ 3 -4 hours - conventional methods 3-5 days

Quantification possible

UNIVERSITÀ DEGLI STUDI DI PARMA

Molecular diagnostic tools - stand alone technologies

www.chill-on.com

- PCR test kits
 - Spoilage bacteria
 - Pathogenic bacteria

DNA-Doppelhelix

 Magnetite and silica-magnetite nanoparticles, which can be added during DNA extraction to purify nucleic acids from food material (Univ. Kent)

OnVu™ TTI Technology

- Freshpoint technology relies on the properties of organic materials that change color according accumulated temperature history of the product
- These materials form the basis of a pigment which is used to formulate their intelligent ink

• The TTI becomes dark when activated (by UV light) and then progressively lighter over time and depending on the temperature history.

universität**ho**

OnVu[™] – for poultry products in retail

Added value of CHILL-ON technologies

www.chill-on.com

CHILL-ON provides tools to:

- monitor HACCP safety
 - » temperature (T-sensors (active)/ color TTIs, rf-TTIs)
 - » microbial contamination /spoilage (PCR-test kits / QMRA models)
- promote food supply of better quality (optimised chilling & SLP models)
- improve traceability (ICT-solutions),

- enhance consumer trust
- supply chain efficiency
- lower the cost of recalls,
- minimize perishable waste,
- enhance sustainability of products,

Temperature influences shelflife

Real - Time Alerts

Quality v.s. logistics

- FEFO First Expired First Out
- FIFO First in First out
- Cost benefit

Food industry - requirements

www.chill-on.com

- Food producers
 - Tools to ensure food safety and traceability
 - Quality / Competitiveness
- Public safety
 - traceability can protect public health and enhance consumer trust.

Poultry and Fish supply chains

- Audits / Compliance with regulations & industrial standards
 - BRC (British Retail Consortium)
 - IFS (International Food Standard)
 - ISO 9001 / ISO 22000
 - GMP Good Manufacturing Practices / Codex
 - HACCP Hazard analysis critical control points system
 - Harmonized auditing and evaluation system
- European directives and regulations
- National legislations

Current situation

- information flow logistics
- Traceable units /barcodes
- Data / lab results /
- Dispatch papers- invoices etc.
- Paper based system in small companies
- Electronic systems in large enterprises

ICT - TRACECHILL System

www.chill-on.com

- Functionality testing of HW & SW
- Application sheets for training
- Target critera
 - Compatability
 - Signal strength
 - Temperture recording
 - Data transfer

=> Alerts

- Validation
 - Microbial testing
 - T emp & Data loggers
 UNIVERSITY OF ICELAND

Temperature is interoperable in the chain

if access is given to the temperature profile, the whole chain becomes transparent!

Consumers 😑

Food industry / SME's/Retail - Alliances

Surveys:Implementation of traceability & temperature monitoring systems

www.chill-on.com

Studies done in China and EEA, Vietnam and Chile

Barriers

- Cost of implementation too high
- Lack of unified standards
- lack of technical staff
- Lack of governmental support (China)

Benefits

- Improve supply chain management
- Differentiate from others

Journal of Food, Agriculture & Environment Vol.7 (2): 64-69, 2009.

www.world-food.net

Adoption of traceability system in Chinese fishery process enterprises: Difficulties, incentives and performance

Feng Wang ¹, Zetian Fu ¹, Weisong Mu ¹, Liliana M. Moga ² and Xiaoshuan Zhang ²
² China Agricultural University Beijing 100083, P.R China. ² Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 - Galati, Romania. *e-mail: zhozhuan@cauedu.cn

www.chill-on.com

Thank you

Guðrún Ólafsdóttir,
CHILL-ON Implementation Coach
Laboratory of Applied Supply Chain Systems
School of Engineering and Natural Sciences
University of Iceland www.hi.is
e-mail:go@hi.is

